
Colloquium Interactions Mathématique et Informatique
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1. SOLVING COMPLEX PROBLEMS: GOAL, SETTING

• “Model” general mechanisms (individual, collective, strategic aspects) used by human
beings in order to solve efficiently real world problems (economic, social...).

• Complexity: cognitive, psychological, environment (unknown, changing), multiscales.

• H. Simon (Nobel prize of economics, 1978, artificial intelligence): as the complexity of the
problem increases, the responses of the agents tend to be more and more simple.

Solving complex problems is a dynamical process:

• Agents try to improve step by step their performances.

• Performance = routine, way of doing, periodic orbit, maintenance, training.

• Procedural rationality: from heuristics, satisficing, to local and global optimization.

• Exploration, learning, adaptive aspects (Levinthal and Warglien, 1999), (Sobel, 2000),
(Berthoz, 2003).

• Multiscaling: short, long memory (E. Kandel, Nobel prize of medecine, 2000).

• Inertia aspects: costs to quit or enter a routine, reactivity (physiological, psychological).

Worthwhile to move principle (Attouch and Soubeyran, 2005):
Acceptable transitions: Advantages to change are greater or equal than Costs to change.
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SOLVING COMPLEX PROBLEMS (continuation)

• Model: Inertial nonautonomous dynamical potential games.

Individual, collective, decentralized, local, inertia, adaptive, learning, multiscale aspects.

Two types of models:

1. Alternating games.

2. Simultaneous games (a coordination process takes account of the collective aspects).

• Results: Convergence results to Nash equilibria, or Pareto (learning cooperative behavior),
rate of convergence (finite time convergence), algorithms (alternate, parallel).

Links with continuous dynamical systems, first and second order gradient systems on
structured decision spaces (Hilbert, Riemannian, metric).

• Applications: From human sciences to computing and artificial intelligence.

1. Analyze coordination and efficiency of human organizations, the learning, adaptive,
inertial features and the dynamical approach to equilibria (Nash, Pareto,...), attractors.

2. Numerical purpose (decomposition, splitting methods, parallel computing).

3. Control theory, stabilization of coupled systems, automatic.

4. Artificial intelligence, robotic. Transpose to multi-agents systems the above algorithms.
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2. DYNAMICS WITH INERTIA: WORTHWHILE TO MOVE PRINCIPLE
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Worthwhile to move principle: Attouch and Soubeyran (2005).

Structured decision space







X : state, strategy , performance space
g : X −→ IR gain function
c : X × X −→ IR+ cost to change

Routine = temporary exploration-exploitation phase.
Passing from a routine xn to a next routine xn+1: Advantages to move must be greater or

equal than some fraction of Costs to move (not too much sacrificing):

g(xn+1) − g(xn) ≥ θn c(xn+1, xn)

m

Marginal gain ≥ Cost to change
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DYNAMICS WITH INERTIA: PROXIMAL ALGORITHMS

Worthwhile to move principle + Optimization aspects ⇒ Proximal Dynamics.

Difficulty to change, inertia −→ Anchoring, local effects:
At stage n and performance xn, the net gain function of the agent is given by

ξ 7−→ g(ξ) − c(ξ, xn).

General proximal dynamics:

xn+1 ∈ ǫn − argmax{g(ξ) − θnc(ξ, xn) : ξ ∈ E(xn, rn)}

• ǫn : psychological, cognitive features (motivation, degree of resolution)

• θn : cognitive features (speed, learning, reactivity).

• E(xn, rn) : exploration set.

Classical prox. dynamics: H Hilbert, c(ξ, x) =‖ ξ − x ‖2, λn > 0

xn+1 ∈ argmax{g(ξ) −
1

2λn

‖ ξ − xn ‖2 : ξ ∈ H}
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xn+1 ∈ ǫn − argmax{g(ξ) − θnc(ξ, xn) : ξ ∈ E(xn, rn)}

Take ξ = xn,

ǫn + g(xn+1) − g(xn) ≥ θnc(xn+1, xn).

Sum w.r. to n, ” finite resource assumption” supXg < +∞
∑

n θnc(xn+1, xn) ≤ supXg − g(x0) +
∑

n ǫn.

Suppose
∑

n ǫn < +∞ and θn > θ > 0.

Then,
∑

n c(xn+1, xn) < +∞.

Hence the local features of the general proximal algorithms

c(xn+1, xn) −→ 0 as n → +∞.

Convergence results:

• Concave case: Martinet, Rockafellar (1976), Auslender, Lemaire, Güler...

• Nonconcave case: Att-Bolte, Math programming, (2006).
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3. POTENTIAL GAMES: THE STATIC NORMAL FORM

(Monderer-Shapley, 1996), m agents (players), indexed by i ∈ {1, 2, ..., m}.

• Hi = performance (strategy) space of player i, xi ∈ Hi.

• fi : Hi → [−∞, +∞[, individual utility of player i. Without interaction with other agents,
the goal of player i is to maximize his individual utility: maximizexi∈Hi

fi(xi).

• Ψ : ⊗Hi → R, collective utility function, models the collective welfare of the group.

• Static payoff function of player i:

Fi(x1, x2, ..., xm) = fi(xi) + βiΨ(x1, x2, ..., xm)

• Static Nash equilibria:

xi ∈ argmaxξ∈Hi
{fi(ξ) + βiΨ(x1, x2, ..., xi−1, ξ, xi+1..., xm)}, i = 1, 2, ..., m.

• Potential function: Lβ(x1, x2, ..., xm) = Ψ(x1, x2, ..., xm) +
∑m

i=1
1
βi
fi(xi).

Best reply = It is “as if” each player maximizes the same objective:

maximizex1∈H1,..,xm∈Hm{Ψ(x1, x2, ..., xm) +

m
∑

i=1

1

βi

fi(xi)}.
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4.1: ALTERNATING POTENTIAL GAMES with INERTIA, 2 PLAYERS

Alternating projections on closed affine subspaces (Von Neumann, 1950, Annals of Math).
Best reply alternating dynamic with cost to change, m=2, Hi Hilbert space, i = 1, 2:

xn = (x1,n, x2,n) −→ (x1,n+1, x2,n) −→ xn+1 = (x1,n+1, x2,n+1) n = 0, 1, ...

{

x1,n+1 ∈ argmax{f1(ξ) + β1Ψ(ξ, x2,n) −
α
2 ‖ ξ − x1,n ‖2

H1
: ξ ∈ H1}

x2,n+1 ∈ argmax{f2(η) + β2Ψ(x1,n+1, η) − ν
2 ‖ η − x2,n ‖2

H2
: η ∈ H2}

• Concave case, Ψ quadratic semidefinite negative form:

(x1,n, x2,n) converges weakly (n → +∞) to a Nash equilibrium = max. point of Lβ.

Att.-Redont-Soubeyran, SIAM J. Optim., 2007.

Att.-Bolte-Redont-Soubeyran, JCA., 2008.

• Nonconcave case, finite dimension, the potential Lβ satisfies the Kurdyka-Lojasiewicz
inequality (analytic, nonsmooth semialgebric function...), smooth coupling function Ψ:

(x1,n, x2,n) converges to a critical point of the potential Lβ, finite length trajectory.

Att.-Bolte-Redont-Soubeyran, HAL 2008, submitted MOR.
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4.2: ALTERNATING POTENTIAL GAMES with INERTIA: m PLAYERS

• Hi = performance (strategy) space of player i ∈ 1, 2, ..., m = real Hilbert space.

• fi : Hi → [−∞, +∞[, individual utility of player i, concave upper semicontinuous.

• Ψ : ⊗Hi → R, collective utility function: Ψ(x1, x2, ..., xm) =
∑

1≤i<j≤m Ψi,j(xi, xj)
where Ψi,j is a semi-definite negative quadratic form.

• Potential function: Lβ(x1, x2, ..., xm) = Ψ(x1, x2, ..., xm) +
∑m

i=1
1
βi
fi(xi)

has at least a maximum point.























x1,n+1 ∈ argmax{f1(ξ) + β1Ψ(ξ, x2,n, . . . , xm,n) −
1
2 ‖ ξ − x1,n ‖2: ξ ∈ H1}

...
xi,n+1 ∈ argmax{fi(ξ) + βiΨ(x1,n+1, ..., xi−1,n+1, ξ, xi+1,n, . . . , xm,n) −

1
2 ‖ ξ − xi,n ‖2}

...
xm,n+1 ∈ argmax{fm(ξ) + βmΨ(x1,n+1, ..., xm−1,n+1, ξ) − 1

2 ‖ ξ − xm,n ‖2: ξ ∈ Hm}

Theorem (ABRS): Let xn = (x1,n, ..., xm,n) a sequence generated by the algorithm.

1. xn converges weakly to a maximum point x∞ of Lβ.

2. xn is a maximizing sequence for Lβ, fi(xi,n) → fi(xi,∞), Ψ(xn) → Ψ(x∞).
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4.3: MULTISCALING: FROM NASH TO PARETO EQUILIBRIA

Best reply alternating dynamic with cost to change and multiscale aspects:

• m=2, Hi Hilbert space, i = 1, 2

• Ψ concave, bounded from above, C = argmaxΨ = Ψ−1(0) non empty closed convex.

xn = (x1,n, x2,n) −→ (x1,n+1, x2,n) −→ xn+1 = (x1,n+1, x2,n+1) n = 0, 1, ...

{

x1,n+1 ∈ argmax{f1(ξ) + β1,nΨ(ξ, x2,n) −
α
2 ‖ ξ − x1,n ‖2

H1
: ξ ∈ H1}

x2,n+1 ∈ argmax{f2(η) + β2,nΨ(x1,n+1, η) − ν
2 ‖ η − x2,n ‖2

H2
: η ∈ H2}

• Fast growing of the collective learning parameters: β1,n = βnβ1, β2,n = βnβ2 with
βn → +∞ as n → +∞. Limiting equilibria:

maximize{
1

β1
f1(x1) +

1

β2
f2(x2) : Ψ(x1, x2) = 0}.

• Slow vanishing of the collective learning parameters: β1,n = βnβ1, β2,n = βnβ2 with
βn → 0 as n → +∞. Limiting equilibria:

maximize{Ψ(x1, x2) : x1 ∈ argmaxf1, x2 ∈ argmaxf2)}.
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5. SIMULTANEOUS COORDINATED GAMES with INERTIA

Att.-Bruceno-Combettes, working paper, 2008.

• m players indexed by i ∈ {1, 2, ..., m}, Hi Hilbert space.

• fi : Hi → R ∪ {−∞} the individual payoff of player i coming from his own action
(concave upper semicontinuous).

• The coupling term Ψ takes care of the common payoff. A decentralized structure involves
subgroups. Within each subgroup, agents share similar features and interact actively.

• For each subgroup k ∈ {1, ..., p} and player i ∈ {1, ..., m}, Lki : Hi → Gk is a bounded
linear operator, it measures the implication of player i in the subgroup k. The common
payoff relative to the activity of the subgroup k:

Ψk(x1, ..., xm) = ϕk

(

∑m
i=1 Lkixi

)

where ϕk : Gk 7→ R is a concave continuous function.

• The global collective payoff which results from the joint action of all the players:

Ψ(x1, ..., xm) =
∑p

k=1 ϕk

(

∑m
i=1 Lkixi

)

.
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DYNAMIC OF DECISION: xn 7→ xn+1 where xn = (x1,n, ..., xm,n).

Collective phase: The task of the co-ordination process (for example a supervisor..., see H.
Moulin, Fair division and Collective Welfare, MIT Press, 2003) is to evaluate the quality of
the global collective payoff x 7→ Ψ(x) around xn and to determine the best possible direction
making this global performance increase, namely ∇Ψ(xn).

Following a gradient rule, the co-ordinator proposes (possibly imposes), to each player i, to
modify his current stategy xi,n:

xi,n 7→ ξi,n = xi,n + γn∇iΨ(xn).

Equivalently,

ξi,n = xi,n + γn

( p
∑

k=1

L∗
ki∇ϕk

( m
∑

j=1

Lkjxj,n

))

.

γn is a parameter which takes account of various features of the decision process:

• Learning collective behaviors (speed, reactivity).

• Interaction agent-coordinator: It is part of the skill of the co-ordinator to help to deter-
mine the size of the coefficient γn: not too small in order to improve substantially the
performance, but not too large, otherwise it is out of the capabilities of the agent, and
out of the local character of the gradient rules.
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Individual phase:

• Each player i has to find a new optimal strategy xi,n+1 taking account both of his individual
payoff fi(.) and of the collective constraints (not to be far from the prescribed modified
strategy ξi,n), which leads to the following maximization problem:

xi,n+1 ∈ argmax{fi(ξ) −
1

2γn

‖ ξ − ξi,n ‖2
Hi

: ξ ∈ Hi}.

Equivalently,

xi,n+1 ∈ argmax{fi(ξ) −
1

2γn

‖ ξ − (xi,n + γn∇iΨ(xn)) ‖
2
Hi

: ξ ∈ Hi}.

where ∇iΨ(xn) =
∑p

k=1 L∗
ki∇ϕk

(

∑m
j=1 Lkjxj,n

)

.

• Parallel splitting algorithm (linked with simultaneous games).

• Risk aversion: relaxation parameter λi,n

xi,n+1 = λi,nxi,n +(1 − λi,n) argmax{fi(ξ)− 1
2γn

‖ ξ− (xi,n + γn∇iΨ(xn)) ‖2
Hi

: ξ ∈ Hi}.
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Convergence results:

xi,n+1 = λnxi,n + (1 − λn) argmax{fi(ξ)−
1

2γn

‖ ξ − (xi,n + γn∇iΨ(xn)) ‖
2
Hi

: ξ ∈ Hi}.

∇iΨ(xn) =
∑p

k=1 L∗
ki∇ϕk

(

∑m
j=1 Lkjxj,n

)

Assumptions:

• ϕk is concave differentiable with a τk- Lipschitz continuous gradient, τk ∈ (0, +∞) .

• Set β =

(

p max
1≤k≤p

τk

m
∑

i=1

‖Lki‖
2

)−1

and fix ε ∈ ]0, min{1, β}[.

• Suppose γn ∈ [ε, 2β − ε], λn ∈ [0, 1 − ε].

Theorem (ABC) Under the above assumptions, the sequence (xn)n∈N converges weakly

to a solution of the maximization problem

maximize
x1∈H1,..., xm∈Hm

m
∑

i=1

fi(xi) +

p
∑

k=1

ϕk

( m
∑

j=1

Ljkxj

)

which can be equivalently interpreted as a Nash equilibrium of the corresponding normal

potential game.
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DECOMPOSITION OF DOMAINS IN PDE’s.

Ω1 Ω2Γ

Dirichlet problem on Ω: h ∈ L2(Ω) given, find u : Ω → IR solution of

{

−∆u = h on Ω
u = 0 on ∂Ω

Variational formulation:

min
{

1
2

∫

Ω1
∇v1|2 + 1

2

∫

Ω2
|∇v2|2 −

∫

Ω hv : v1 ∈ X1, v2 ∈ X2, [v] = 0 on Γ
}

.

• Xi = {v ∈ H1(Ωi), v = 0 on ∂Ω ∩ ∂Ωi}, v = vi on Ωi, i = 1, 2.

• [v] = jump of v through the interface Γ.

min {f1(v1) + f2(v2) : v1 ∈ X1, v2 ∈ X2, A1(v1) − A2(v2) = 0} .

Ai : H1(Ωi) → Z = L2(Γ) is the trace operator, i = 1, 2.
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Continuous dynamical system:






























−∆∂u1
∂t

− ∆u1 = h1 on Ω1

− ∆∂u2
∂t

− ∆u2 = h2 on Ω2

∂u̇1(t)
∂ν1

+ ∂u1
∂ν1

(t) − β(t) [u(t)] = 0 on Γ

∂u̇2(t)
∂ν2

+ ∂u2
∂ν2

(t) + β(t) [u(t)] = 0 on Γ

Discrete version: Alternating Algorithm with Dirichlet-Neumann transmission conditions:

(u1,n, u2,n) → (u1,n+1, u2,n) → (u1,n+1, u2,n+1) with βn → +∞.















−(1 + α)∆u1,n+1 = h1 − α∆u1,n on Ω1

(1 + α)
∂u1,n+1

∂ν1
+ βnu1,n+1 = βnu2,n + α

∂u1,n

∂ν1
on Γ

u1,n+1 = 0 on ∂Ω1 ∩ ∂Ω


















−(1 + α)∆u2,n+1 = h2 − α∆u2,n on Ω2

(1 + α)
∂u2,n+1

∂ν2
+ βnu2,n+1 = βku1,n+1 + α

∂u2,n

∂ν2
on Γ

u2,n+1 = 0 on ∂Ω2 ∩ ∂Ω
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PERSPECTIVES

• Multiscale aspects: different speed of learning (agents, groups, individual and collective).

• Multi-agents, IA., general model with adaptive aspects (payoff, learning...), control.

• Learning curves, routines.

• Probabilistic aspects: payoff as expectation.

• From gradient methods to Riemannian gradient methods, interior point methods.

• From learning coefficients to learning operators.

• Second order dynamics, reactivity aspects.

• Zero sum games, conflictual aspects, hybrid dynamics (continuous and discrete).

• From convex to non-convex analysis via Kurdyka-Lojasiewicz inequality in simultaneous
games.

• Numerical developments for domain decomposition problems.
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